来一水AV@lysav|亚洲AV无码片VR一区二区三区 |国产亚洲精久久久久久无码|视色4se成人午夜精品久久

掃碼關(guān)注公眾號           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  人才招聘  關(guān)于我們  聯(lián)系我們
欧美亚洲午夜精品福利|女主播喷水免费直播
首頁 > 產(chǎn)品中心 > 一抗 > 產(chǎn)品信息
Rabbit Anti-phospho-FGFR3 (Tyr724)  antibody (bs-13170R)  
訂購熱線:400-901-9800
訂購郵箱:sales@73327.net
訂購QQ:  400-901-9800
技術(shù)支持:techsupport@73327.net
說明書: 50ul  100ul  200ul
50ul/1180.00元
100ul/1980.00元
200ul/2800.00元
大包裝/詢價

產(chǎn)品編號 bs-13170R
英文名稱 Rabbit Anti-phospho-FGFR3 (Tyr724)  antibody
中文名稱 磷酸化成纖維細胞生長因子受體3抗體
別    名 FGFR3 (phospho Y724); FGFR3 (phospho Tyr724); p-FGFR3 (phospho Y724); ACH; CD 333; CD333; CD333 antigen; CEK 2; CEK2; FGFR 3; Fibroblast growth factor receptor 3 (achondroplasia thanatophoric dwarfism); Fibroblast growth factor receptor 3; Heparin binding growth factor receptor; HSFGFR3EX; Hydroxyaryl protein kinase; JTK 4; JTK4; MFR 3; SAM 3; Tyrosine kinase JTK 4; Tyrosine kinase JTK4; Z FGFR 3.  
產(chǎn)品類型 磷酸化抗體 
研究領(lǐng)域 腫瘤  細胞生物  信號轉(zhuǎn)導  生長因子和激素  轉(zhuǎn)錄調(diào)節(jié)因子  細胞膜受體  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應 Human,Mouse,Rat (predicted: Rabbit,Sheep,Cow,Dog,Horse)
產(chǎn)品應用 WB=1:500-2000
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
理論分子量 86kDa
細胞定位 細胞漿 細胞膜 
性    狀 Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthesised phosphopeptide derived from human FGFR3 around the phosphorylation site of Tyr724: DL(p-Y)MI 
亞    型 IgG
純化方法 affinity purified by Protein A
緩 沖 液 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.
保存條件 Shipped at 4℃. Store at -20℃ for one year. Avoid repeated freeze/thaw cycles.
注意事項 This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
PubMed PubMed
產(chǎn)品介紹 The encoded protein is synthesized mainly in corticotroph cells of the anterior pituitary where four cleavage sites are used; adrenocorticotrophin, essential for normal steroidogenesis and the maintenance of normal adrenal weight, and lipotropin beta are the major end products. In other tissues, including the hypothalamus, placenta, and epithelium, all cleavage sites may be used, giving rise to peptides with roles in pain and energy homeostasis, melanocyte stimulation, and immune modulation. These include several distinct melanotropins, lipotropins, and endorphins that are contained within the adrenocorticotrophin and beta-lipotropin peptides. Mutations in this gene have been associated with early onset obesity, adrenal insufficiency, and red hair pigmentation. Alternatively spliced transcript variants encoding the same protein have been described.

Function:
Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation and apoptosis. Plays an essential role in the regulation of chondrocyte differentiation, proliferation and apoptosis, and is required for normal skeleton development. Regulates both osteogenesis and postnatal bone mineralization by osteoblasts. Promotes apoptosis in chondrocytes, but can also promote cancer cell proliferation. Required for normal development of the inner ear. Phosphorylates PLCG1, CBL and FRS2. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate.

Subunit:
Monomer. Homodimer after ligand binding. Interacts with FGF1, FGF2, FGF4, FGF6; FGF8, FGF9, FGF10, FGF17, FGF18, FGF19, FGF20 and FGF23 (in vitro). Interacts with KLB. Affinity for fibroblast growth factors (FGFs) is increased by heparan sulfate glycosaminoglycans that function as coreceptors. Likewise, KLB increases the affinity for FGF19 and FGF21. Interacts with PIK3R1, PLCG1, SOCS1 and SOCS3.

Subcellular Location:
Cell membrane; Single-pass type I membrane protein. Cytoplasmic vesicle. Endoplasmic reticulum. Note=The activated receptor is rapidly internalized and degraded. Detected in intracellular vesicles after internalization of the autophosphorylated receptor.

Tissue Specificity:
Expressed in brain, kidney and testis. Very low or no expression in spleen, heart, and muscle. In 20- to 22-week old fetuses it is expressed at high level in kidney, lung, small intestine and brain, and to a lower degree in spleen, liver, and muscle. Isoform 2 is detected in epithelial cells. Isoform 1 is not detected in epithelial cells. Isoform 1 and isoform 2 are detected in fibroblastic cells.

Post-translational modifications:
Autophosphorylated. Binding of FGF family members together with heparan sulfate proteoglycan or heparin promotes receptor dimerization and autophosphorylation on tyrosine residues. Autophosphorylation occurs in trans between the two FGFR molecules present in the dimer. Phosphorylation at Tyr-724 is essential for stimulation of cell proliferation and activation of PIK3R1, STAT1 and MAP kinase signaling. Phosphorylation at Tyr-760 is required for interaction with PIK3R1 and PLCG1.

DISEASE:
Defects in FGFR3 are the cause of achondroplasia (ACH) [MIM:100800]. ACH is an autosomal dominant disease and is the most frequent form of short-limb dwarfism. It is characterized by a long, narrow trunk, short extremities, particularly in the proximal (rhizomelic) segments, a large head with frontal bossing, hypoplasia of the midface and a trident configuration of the hands.
Defects in FGFR3 are the cause of Crouzon syndrome with acanthosis nigricans (CAN) [MIM:612247]. Classic Crouzon disease which is caused by mutations in the FGFR2 gene is characterized by craniosynostosis (premature fusion of the skull sutures), and facial hypoplasia. Crouzon syndrome with acanthosis nigricans (a skin disorder characterized by pigmentation anomalies), CAN, is considered to be an independent disorder from classic Crouzon syndrome. CAN is characterized by additional more severe physical manifestation, such as Chiari malformation, hydrocephalus, and atresia or stenosis of the choanas, and is caused by a specific mutation (Ala-391 to Glu) in the transmembrane domain of FGFR3. It is proposed to have an autosomal dominant mode of inheritance.
Defects in FGFR3 are a cause of thanatophoric dysplasia type 1 (TD1) [MIM:187600]; also known as thanatophoric dwarfism or platyspondylic lethal skeletal dysplasia Sand Diego type (PLSD-SD). TD1 is the most common neonatal lethal skeletal dysplasia. Affected individuals display features similar to those seen in homozygous achondroplasia. It causes severe shortening of the limbs with macrocephaly, narrow thorax and short ribs. In the most common subtype, TD1, femur are curved.
Defects in FGFR3 are a cause of thanatophoric dysplasia type 2 (TD2) [MIM:187601]. It is a neonatal lethal skeletal dysplasia causing severe shortening of the limbs, narrow thorax and short ribs. Patients with thanatophoric dysplasia type 2 have straight femurs and cloverleaf skull.
Defects in FGFR3 are a cause of hypochondroplasia (HCH) [MIM:146000]. HCH is an autosomal dominant disease and is characterized by disproportionate short stature. It resembles achondroplasia, but with a less severe phenotype.
Defects in FGFR3 are a cause of susceptibility to bladder cancer (BLC) [MIM:109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Somatic mutations can constitutively activate FGFR3.
Defects in FGFR3 are a cause of cervical cancer (CERCA) [MIM:603956]. A malignant neoplasm of the cervix, typically originating from a dysplastic or premalignant lesion previously present at the active squamocolumnar junction. The transformation from mild dysplastic to invasive carcinoma generally occurs slowly within several years, although the rate of this process varies widely. Carcinoma in situ is particularly known to precede invasive cervical cancer in most cases. Cervical cancer is strongly associated with infection by oncogenic types of human papillomavirus.

Similarity:
Belongs to the protein kinase superfamily. Tyr protein kinase family.
Fibroblast growth factor receptor subfamily.
Contains 3 Ig-like C2-type (immunoglobulin-like) domains.
Contains 1 protein kinase domain.

SWISS:
P22607

Gene ID:
2261

Database links:

Entrez Gene: 2261 Human

Entrez Gene: 14184 Mouse

Entrez Gene: 84489 Rat

SwissProt: P22607 Human

SwissProt: Q61851 Mouse



產(chǎn)品圖片
Sample: Lane 1: Mouse Cerebrum tissue lysates Lane 2: Mouse Testis tissue lysates Lane 3: Rat Cerebrum tissue lysates Lane 4: Rat Testis tissue lysates Lane 5: Human HepG2 cell lysates Lane 6: Human HeLa cell lysates Primary: Anti-phospho-FGFR3 (Tyr724) (bs-13170R) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 86 kDa Observed band size: 105 kDa
版權(quán)所有 2004-2026 www.73327.net 北京博奧森生物技術(shù)有限公司
通過國際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網(wǎng)安備110107000727號
日本一区二区三区视频免费看| 久久\/这里只精品99re66| 少妇愉情理伦片丰满丰满午夜| 欧美老妇交ZOZO| 内射后入日韩欧美精品| 国产精品99久久久久久WWW| 3D动漫精品啪啪一区二区免费| 综合一个av| 人妻无码AV中文系列久久| 巨大黑人极品videos精品| 国产精品玖玖玖在线| 在线搞色网| 色一情一乱一伦一区二区三区 | 少妇高潮惨叫久久久久电影69 | 日本丰满熟妇BBXBBXHD| 最近免费中文字幕中文高清6| 亚洲一本大道无码AV天堂| 久久毛片av| 欧美性黑人精品HD| 国产99久久久久久一区二区| 久久亚洲国产成人精品无码区| 无码人妻丰满熟妇啪啪| 高清欧美性猛交XXXX黑人猛交 | 久久久精品视频亚洲| 亚洲五月七月丁香缴情| 欧美日韩一级中文字幕| 日韩av一区二区在线播放| 亚洲AV乱码一区二区三区林ゆな| 色婷婷综合久久久中文字幕| 亚洲精品久久久久久中文| 亚洲色偷偷综合亚洲AV伊人 | 久久久久99精品成人免费| 樱桃视频大全免费高清版| 日韩高清在线亚洲专区小说| 久久泄欲网| 亚洲欧美日韩一区二区搜索| 亚洲日韩精品一区二区三区无码| 精品亚洲成A人7777在线观看| 精品人妻一二三区免费| 国产高清午夜激情成人| 人妻人人揉人人躁人人A片 |