来一水AV@lysav|亚洲AV无码片VR一区二区三区 |国产亚洲精久久久久久无码|视色4se成人午夜精品久久

掃碼關注公眾號           掃碼咨詢技術支持           掃碼咨詢技術服務
  
客服熱線:400-901-9800  客服QQ:4009019800  技術答疑  技術支持  質量反饋  人才招聘  關于我們  聯系我們
久久99久久99精品免视看|老子午夜精品无码|无码人妻精品一区二区三区66
首頁 > 產品中心 > 標記一抗 > 產品信息
Rabbit Anti-CDK9/PE-Cy3 Conjugated antibody (bs-1388R-PE-Cy3)
訂購熱線:400-901-9800
訂購郵箱:sales@73327.net
訂購QQ:  400-901-9800
技術支持:techsupport@73327.net
說 明 書: 100ul  
100ul/2980.00元
大包裝/詢價
產品編號 bs-1388R-PE-Cy3
英文名稱1 Rabbit Anti-CDK9/PE-Cy3 Conjugated antibody
中文名稱 PE-Cy3標記的周期素依賴性激酶9抗體
別    名 C 2k; C-2K; CDC2 related kinase; CDC2L4; Cdk 9; Cdk9; CDK9_HUMAN; Cell division cycle 2 like protein kinase 4; Cell division cycle 2-like protein kinase 4; Cell division protein kinase 9; CTK1; Cyclin dependent kinase 9; Cyclin-dependent kinase 9; PITALRE; Serine threonine protein kinase PITALRE; Serine/threonine-protein kinase PITALRE; TAK; Tat associated kinase complex catalytic subunit.  
規(guī)格價格 100ul/2980元 購買        大包裝/詢價
說 明 書 100ul  
研究領域 腫瘤  細胞生物  信號轉導  細胞周期蛋白  表觀遺傳學  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應 Human,  (predicted: Mouse, Rat, Chicken, Dog, Cow, Horse, Rabbit, )
產品應用 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 43kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human CDK9
亞    型 IgG
純化方法 affinity purified by Protein A
儲 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產品介紹 background:
The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK family members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and known as important cell cycle regulators. This kinase was found to be a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit of RNA polymerase II. This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found to interact with this protein and cyclin T, which suggested a possible involvement of this protein in AIDS. [provided by RefSeq, Jul 2008]

Function:
Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis. P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export. Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing. The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro. Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage. In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6. Promotes cardiac myocyte enlargement. RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription. AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect. The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation.

Subunit:
Associates with CCNT1/cyclin-T1, CCNT2/cyclin-T2 (isoform A and isoform B) or CCNK/cyclin-K to form active P-TEFb. P-TEFb forms a complex with AFF4/AF5Q31. Component of a complex which is composed of at least 5 members: HTATSF1/Tat-SF1, P-TEFb complex, RNA pol II, SUPT5H, and NCL/nucleolin. Associates with UBR5 and forms a transcription regulatory complex composed of CDK9, RNAP II, UBR5 and TFIIS/TCEA1 that can stimulate target gene transcription (e.g. gamma fibrinogen/FGG) by recruiting their promoters. Component of the 7SK snRNP inactive complex which is composed of at least 8 members: P-TEFb (composed of CDK9 and CCNT1/cyclin-T1), HEXIM1, HEXIM2, LARP7, BCDIN3, SART3 proteins and 7SK and U6 snRNAs. This inactive 7SK snRNP complex can also interact with NCOR1 and HDAC3, probably to regulate CDK9 acetylation. Release of P-TEFb from P-TEFb/7SK snRNP complex requires both PP2B to transduce calcium Ca(2+) signaling in response to stimuli (e.g. UV or hexamethylene bisacetamide (HMBA)), and PPP1CA to dephosphorylate Thr-186. This released P-TEFb remains inactive in the preinitiation complex with BRD4 until new Thr-186 phosphorylation occurs after the synthesis of a short RNA. Binds to BRD4, probably to target chromatin binding. Interacts with the acidic/proline-rich region of HIV-1 and HIV-2 Tat via T-loop region, and is thus required for HIV to hijack host transcription machinery during its replication through cooperative binding to viral TAR RNA. Interacts with activated nuclear STAT3 and RELA/p65. Binds to AR and MYOD1. Forms a complex composed of CDK9, CCNT1/cyclin-T1, EP300 and GATA4 that stimulates hypertrophy in cardiomyocytes. Isoform 3 binds to KU70/XRCC6.

Subcellular Location:
Nucleus. Cytoplasm. Nucleus, PML body. Note=Accumulates on chromatin in response to replication stress. Complexed with CCNT1 in nuclear speckles, but uncomplexed form in the cytoplasm. The translocation from nucleus to cytoplasm is XPO1/CRM1-dependent. Associates with PML body when acetylated.

Tissue Specificity:
Ubiquitous.

Post-translational modifications:
Autophosphorylation at Thr-186, Ser-347, Thr-350, Ser-353, Thr-354 and Ser-357 triggers kinase activity by promoting cyclin and substrate binding (e.g. HIV TAT) upon conformational changes. Thr-186 phosphorylation requires the calcium Ca(2+) signaling pathway, including CaMK1D and calmodulin. This inhibition is relieved by Thr-29 dephosphorylation. However, phosphorylation at Thr-29 is inhibitory within the HIV transcription initiation complex. Phosphorylation at Ser-175 inhibits kinase activity. Can be phosphorylated on either Thr-362 or Thr-363 but not on both simultaneously (PubMed:18566585).
Dephosphorylation of Thr-186 by PPM1A and PPM1B blocks CDK9 activity and may lead to CDK9 proteasomal degradation. However, PPP1CA-mediated Thr-186 dephosphorylation is required to release P-TEFb from its inactive P-TEFb/7SK snRNP complex. Dephosphorylation of C-terminus Thr and Ser residues by protein phosphatase-1 (PP1) triggers CDK9 activity, contributing to the activation of HIV-1 transcription.
N6-acetylation of Lys-44 by CBP/p300 promotes kinase activity, whereas acetylation of both Lys-44 and Lys-48 mediated by PCAF/KAT2B and GCN5/KAT2A reduces kinase activity. The acetylated form associates with PML bodies in the nuclear matrix and with the transcriptionally silent HIV-1 genome; deacetylated upon transcription stimulation.
Polyubiquitinated and thus activated by UBR5. This ubiquitination is promoted by TFIIS/TCEA1 and favors 'Ser-2' phosphorylation of RPB1/POLR2A CTD.

DISEASE:
Note=Chronic activation of CDK9 causes cardiac myocyte enlargement leading to cardiac hypertrophy, and confers predisposition to heart failure.

Similarity:
Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. CDC2/CDKX subfamily.
Contains 1 protein kinase domain.

Database links:

Entrez Gene: 1025 Human

Entrez Gene: 107951 Mouse

Entrez Gene: 362110 Rat

Omim: 603251 Human

SwissProt: P50750 Human

SwissProt: Q99J95 Mouse

SwissProt: Q641Z4 Rat

Unigene: 150423 Human

Unigene: 706809 Human

Unigene: 27557 Mouse

Unigene: 98228 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
版權所有 2004-2026 www.73327.net 北京博奧森生物技術有限公司
通過國際質量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網安備110107000727號
无码八A片人妻少妇久久| 精品久久久久久久无码人妻热| 国产一区二区三区在线蜜桃| 99精品久久久久久久| 亚洲精品无码成人片久久不卡| 我在开会他在下添好爽| 伊人色综合久久天天| 日本高清色倩视频在线观看| 国产精品岛国久久久久| 日本人妻巨大乳挤奶水| 亚洲AV色香蕉一区二区三区| 窝窝午夜精品一区二区| 无码人妻一区二区三区免费| 亚洲国产一区二区三区| 狠狠躁日日躁夜夜躁2022麻豆| 91精品欧美一区二久久| av电影亚洲| 成年女人免费视频试看465| 亚洲人妻精品一区二区三区| 精品第一国产综合精品蜜芽| 亚洲自偷精品视频自拍| 无码精品亚洲第1页| 欧美性猛交XXXX黑人猛交| 经典三级美腿丝袜影音先锋 | 99精品人妻少妇一区二区| 我的SM经历1一25章| 国产AV人人夜夜澡人人爽麻豆| 欧美日本午夜免费观看视频在线| 丰满人妻中文字幕一区二区| 网禁呦萝资源网站| 边做饭边被躁BD| 亚洲AV无码乱码在线观看,不卡 | 五色资源| 精品人妻一区二区三区四区在线| 丰满少妇被猛烈进入| 全部孕妇毛片丰满孕妇孕交| 国产AV人人夜夜澡人人爽| 亚洲AV无码国产精品色软件| 啊灬啊灬啊灬快灬深用力| 99精产国品一二三产区区别电影| 老旺的大肉蟒进进出出|