来一水AV@lysav|亚洲AV无码片VR一区二区三区 |国产亚洲精久久久久久无码|视色4se成人午夜精品久久

掃碼關(guān)注公眾號           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  人才招聘  關(guān)于我們  聯(lián)系我們
AV观看|草色噜噜噜AV在线观看香蕉|中文字幕日本人妻久久久免费
Rabbit Anti-Phospho-CDK9 (Thr29)/Cy7 Conjugated antibody (bs-20205R-Cy7)
訂購熱線:400-901-9800
訂購郵箱:sales@73327.net
訂購QQ:  400-901-9800
技術(shù)支持:techsupport@73327.net
說 明 書: 100ul  
100ul/2980.00元
大包裝/詢價(jià)
產(chǎn)品編號 bs-20205R-Cy7
英文名稱1 Rabbit Anti-Phospho-CDK9 (Thr29)/Cy7 Conjugated antibody
中文名稱 Cy7標(biāo)記的磷酸化周期素依賴性激酶9抗體
別    名 CCN T1; CCNT; CCNT 1; CCNT1; CDK9 associated C type protein; Cyc T1; Cyclin C related protein;cyclin T; cyclin T1; Cyclin T1b; Cyclin-T; cyclin-T1; ; CYCT 1; cycT1; HIVE1; Human immunodeficiency virus 1 expression; Human immunodeficiency virus type 1 (HIV 1) expression (elevated) 1; pTEFb subunit; Subunit of positive elongation transcription factor b; CDK9_HUMAN.  
規(guī)格價(jià)格 100ul/2980元 購買        大包裝/詢價(jià)
說 明 書 100ul  
研究領(lǐng)域 細(xì)胞生物  免疫學(xué)  神經(jīng)生物學(xué)  細(xì)胞凋亡  細(xì)胞周期蛋白  激酶和磷酸酶  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng) (predicted: Human, Mouse, Rat, Chicken, Dog, Pig, Cow, Zebrafish, )
產(chǎn)品應(yīng)用
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 43kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human Phospho-CDK9 (Thr29)
亞    型 IgG
純化方法 affinity purified by Protein A
儲 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產(chǎn)品介紹 background:
The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance through the cell cycle. Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which contribute to the temporal coordination of each mitotic event. This cyclin tightly associates with CDK9 kinase, and was found to be a major subunit of the transcription elongation factor p-TEFb. The kinase complex containing this cyclin and the elongation factor can interact with, and act as a cofactor of human immunodeficiency virus type 1 (HIV-1) Tat protein, and was shown to be both necessary and sufficient for full activation of viral transcription. This cyclin and its kinase partner were also found to be involved in the phosphorylation and regulation of the carboxy-terminal domain (CTD) of the largest RNA polymerase II subunit.

Function:
Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis. P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export. Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing. The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro. Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage. In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6. Promotes cardiac myocyte enlargement. RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription. AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect. The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation.

Subunit:
Associates with CCNT1/cyclin-T1, CCNT2/cyclin-T2 (isoform A and isoform B) or CCNK/cyclin-K to form active P-TEFb. P-TEFb forms a complex with AFF4/AF5Q31. Component of a complex which is composed of at least 5 members: HTATSF1/Tat-SF1, P-TEFb complex, RNA pol II, SUPT5H, and NCL/nucleolin. Associates with UBR5 and forms a transcription regulatory complex composed of CDK9, RNAP II, UBR5 and TFIIS/TCEA1 that can stimulate target gene transcription (e.g. gamma fibrinogen/FGG) by recruiting their promoters. Component of the 7SK snRNP inactive complex which is composed of at least 8 members: P-TEFb (composed of CDK9 and CCNT1/cyclin-T1), HEXIM1, HEXIM2, LARP7, BCDIN3, SART3 proteins and 7SK and U6 snRNAs. This inactive 7SK snRNP complex can also interact with NCOR1 and HDAC3, probably to regulate CDK9 acetylation. Release of P-TEFb from P-TEFb/7SK snRNP complex requires both PP2B to transduce calcium Ca(2+) signaling in response to stimuli (e.g. UV or hexamethylene bisacetamide (HMBA)), and PPP1CA to dephosphorylate Thr-186. This released P-TEFb remains inactive in the preinitiation complex with BRD4 until new Thr-186 phosphorylation occurs after the synthesis of a short RNA. Binds to BRD4, probably to target chromatin binding. Interacts with the acidic/proline-rich region of HIV-1 and HIV-2 Tat via T-loop region, and is thus required for HIV to hijack host transcription machinery during its replication through cooperative binding to viral TAR RNA. Interacts with activated nuclear STAT3 and RELA/p65. Binds to AR and MYOD1. Forms a complex composed of CDK9, CCNT1/cyclin-T1, EP300 and GATA4 that stimulates hypertrophy in cardiomyocytes. Isoform 3 binds to KU70/XRCC6.

Subcellular Location:
Nucleus. Cytoplasm. Nucleus, PML body. Note=Accumulates on chromatin in response to replication stress. Complexed with CCNT1 in nuclear speckles, but uncomplexed form in the cytoplasm. The translocation from nucleus to cytoplasm is XPO1/CRM1-dependent. Associates with PML body when acetylated.

Tissue Specificity:
Ubiquitous.

Post-translational modifications:
Autophosphorylation at Thr-186, Ser-347, Thr-350, Ser-353, Thr-354 and Ser-357 triggers kinase activity by promoting cyclin and substrate binding (e.g. HIV TAT) upon conformational changes. Thr-186 phosphorylation requires the calcium Ca(2+) signaling pathway, including CaMK1D and calmodulin. This inhibition is relieved by Thr-29 dephosphorylation. However, phosphorylation at Thr-29 is inhibitory within the HIV transcription initiation complex. Phosphorylation at Ser-175 inhibits kinase activity. Can be phosphorylated on either Thr-362 or Thr-363 but not on both simultaneously (PubMed:18566585).
Dephosphorylation of Thr-186 by PPM1A and PPM1B blocks CDK9 activity and may lead to CDK9 proteasomal degradation. However, PPP1CA-mediated Thr-186 dephosphorylation is required to release P-TEFb from its inactive P-TEFb/7SK snRNP complex. Dephosphorylation of C-terminus Thr and Ser residues by protein phosphatase-1 (PP1) triggers CDK9 activity, contributing to the activation of HIV-1 transcription.
N6-acetylation of Lys-44 by CBP/p300 promotes kinase activity, whereas acetylation of both Lys-44 and Lys-48 mediated by PCAF/KAT2B and GCN5/KAT2A reduces kinase activity. The acetylated form associates with PML bodies in the nuclear matrix and with the transcriptionally silent HIV-1 genome; deacetylated upon transcription stimulation.
Polyubiquitinated and thus activated by UBR5. This ubiquitination is promoted by TFIIS/TCEA1 and favors 'Ser-2' phosphorylation of RPB1/POLR2A CTD.

DISEASE:
Note=Chronic activation of CDK9 causes cardiac myocyte enlargement leading to cardiac hypertrophy, and confers predisposition to heart failure.

Similarity:
Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. CDC2/CDKX subfamily.
Contains 1 protein kinase domain.

Database links:

Entrez Gene: 1025 Human

Entrez Gene: 107951 Mouse

Entrez Gene: 362110 Rat

Omim: 603251 Human

SwissProt: P50750 Human

SwissProt: Q99J95 Mouse

SwissProt: Q641Z4 Rat

Unigene: 150423 Human

Unigene: 706809 Human

Unigene: 27557 Mouse

Unigene: 98228 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
版權(quán)所有 2004-2026 www.73327.net 北京博奧森生物技術(shù)有限公司
通過國際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網(wǎng)安備110107000727號
国产又黄又大又粗的视频| 扒开腿挺进湿润的花苞| 最近免费中文字幕中文高清6| 爆乳2把你榨干哦OVA在线观看| 无码人妻精品一区二区三区在线| 日韩中文字幕久久一二三区| 久久亚洲精品无码av| 亚洲成A∨人在线播放欧美| 久久精品午夜一区二区福利| 亚洲3d成人动漫在线观看| 欧美精品日韩精品亚洲| 性XXXXX大片免费视频| 妓院一钑片免看黄大片| 国产精品日本一区二区不卡视频 | FREE性VIDEO西欧极品| 久久偷看各类WC女厕嘘嘘偷窃| 久久久久亚洲AV成人无码电影| AA片在线观看视频在线播放| 国产精品久久久久久久久综合| 亚洲午夜精品一区在线| 精品黑人一区二区三区| 国产AⅤ无码专区亚洲AV| 9色丨PORNY丨人妻| 特级毛片A片久久久久久| 国产美女极度色诱视频www| 国产精品精品国内自产拍| 亚洲AV日韩AV永久无码色欲 | 亚洲AV无码专区在线播放中文| 亚洲精品熟女国产国产老熟女| 东北老女人高潮大叫对白| 无码久久久久久久久| ,国产精品久久久久久| 国产精品久久一区二区三区| 久久亚洲国产精品一区| 欧美老妇交ZOZO| 国产成人久久久77777| 国产一区二区精品自拍| 西西里的美丽传说在线观看| 欧美精品日韩精品亚洲| 在线不卡av片免费观看| 玩弄白嫩少妇XXXXX性|