来一水AV@lysav|亚洲AV无码片VR一区二区三区 |国产亚洲精久久久久久无码|视色4se成人午夜精品久久

掃碼關(guān)注公眾號           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  人才招聘  關(guān)于我們  聯(lián)系我們
最近中文字幕国语免费高清6 |人妻少妇精品中文字幕AV蜜桃
Rabbit Anti-Phospho-Insulin Receptor (Tyr999) /Cy5.5 Conjugated antibody (bs-16680R-Cy5.5)
訂購熱線:400-901-9800
訂購郵箱:sales@73327.net
訂購QQ:  400-901-9800
技術(shù)支持:techsupport@73327.net
說 明 書: 100ul  
100ul/2980.00元
大包裝/詢價
產(chǎn)品編號 bs-16680R-Cy5.5
英文名稱1 Rabbit Anti-Phospho-Insulin Receptor (Tyr999) /Cy5.5 Conjugated antibody
中文名稱 Cy5.5標(biāo)記的磷酸化胰島素受體抗體
別    名 Insulin Receptor (phospho Y999); p-Insulin Receptor (phospho Y999); CD 220; CD220; CD220 antigen; HHF 5; HHF5; human insulin receptor; INSR; INSR_HUMAN; Insulin receptor subunit beta; IR 1; IR; IR-1; IR1.  
規(guī)格價格 100ul/2980元 購買        大包裝/詢價
說 明 書 100ul  
產(chǎn)品類型 磷酸化抗體 
研究領(lǐng)域 細(xì)胞生物  信號轉(zhuǎn)導(dǎo)  生長因子和激素  激酶和磷酸酶  糖尿病  新陳代謝  細(xì)胞膜蛋白  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng) Human, Rat,  (predicted: Chicken, Cow, Horse, )
產(chǎn)品應(yīng)用 Flow-Cyt=1:50-200 ICC=1:50-200 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 70kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthesised phosphopeptide derived from human Insulin Receptor around the phosphorylation site of Tyr999
亞    型 IgG
純化方法 affinity purified by Protein A
儲 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產(chǎn)品介紹 background:
After removal of the precursor signal peptide, the insulin receptor precursor is post-translationally cleaved into two chains (alpha and beta) that are covalently linked. Binding of insulin to the insulin receptor (INSR) stimulates glucose uptake. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

Function:
Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.

Subunit:
Tetramer of 2 alpha and 2 beta chains linked by disulfide bonds. The alpha chains contribute to the formation of the ligand-binding domain, while the beta chains carry the kinase domain. Forms a hybrid receptor with IGF1R, the hybrid is a tetramer consisting of 1 alpha chain and 1 beta chain of INSR and 1 alpha chain and 1 beta chain of IGF1R. Interacts with SORBS1 but dissociates from it following insulin stimulation. Binds SH2B2. Activated form of INSR interacts (via Tyr-999) with the PTB/PID domains of IRS1 and SHC1. The sequences surrounding the phosphorylated NPXY motif contribute differentially to either IRS1 or SHC1 recognition. Interacts (via tyrosines in the C-terminus) with IRS2 (via PTB domain and 591-786 AA); the 591-786 would be the primary anchor of IRS2 to INSR while the PTB domain would have a stabilizing action on the interaction with INSR. Interacts with the SH2 domains of the 85 kDa regulatory subunit of PI3K (PIK3R1) in vitro, when autophosphorylated on tyrosine residues. Interacts with SOCS7. Interacts (via the phosphorylated Tyr-999), with SOCS3. Interacts (via the phosphorylated Tyr-1185, Tyr-1189, Tyr-1190) with SOCS1. Interacts with CAV2 (tyrosine-phosphorylated form); the interaction is increased with 'Tyr-27'phosphorylation of CAV2 (By similarity). Interacts with ARRB2 (By similarity). Interacts with GRB10; this interaction blocks the association between IRS1/IRS2 and INSR, significantly reduces insulin-stimulated tyrosine phosphorylation of IRS1 and IRS2 and thus decreases insulin signaling. Interacts with GRB7 (By similarity). Interacts with PDPK1. Interacts (via Tyr-1190) with GRB14 (via BPS domain); this interaction protects the tyrosines in the activation loop from dephosphorylation, but promotes dephosphorylation of Tyr-999, this results in decreased interaction with, and phosphorylation of, IRS1. Interacts (via subunit alpha) with ENPP1 (via 485-599 AA); this interaction blocks autophosphorylation. Interacts with PTPRE; this interaction is dependent of Tyr-1185, Tyr-1189 and Tyr-1190 of the INSR. Interacts with STAT5B (via SH2 domain). Interacts with PTPRF.

Subcellular Location:
Cell membrane.

Tissue Specificity:
Isoform Long and isoform Short are predominantly expressed in tissue targets of insulin metabolic effects: liver, adipose tissue and skeletal muscle but are also expressed in the peripheral nerve, kidney, pulmonary alveoli, pancreatic acini, placenta vascular endothelium, fibroblasts, monocytes, granulocytes, erythrocytes and skin. Isoform Short is preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney. Found as a hybrid receptor with IGF1R in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta (at protein level). Overexpressed in several tumors, including breast, colon, lung, ovary, and thyroid carcinomas.

Post-translational modifications:
After being transported from the endoplasmic reticulum to the Golgi apparatus, the single glycosylated precursor is further glycosylated and then cleaved, followed by its transport to the plasma membrane.

DISEASE:
Rabson-Mendenhall syndrome Leprechaunism Diabetes mellitus, non-insulin-dependent Familial hyperinsulinemic hypoglycemia 5 Insulin-resistant diabetes mellitus with acanthosis nigricans type A.

Similarity:
Belongs to the protein kinase superfamily. Tyr protein kinase family.
Insulin receptor subfamily.
Contains 3 fibronectin type-III domains.
Contains 1 protein kinase domain.

Database links:

Entrez Gene: 3643 Human

Entrez Gene: 16337 Mouse

Entrez Gene: 24954 Rat

Omim: 147670 Human

SwissProt: P06213 Human

SwissProt: P15208 Mouse

SwissProt: P15127 Rat

Unigene: 465744 Human

Unigene: 268003 Mouse

Unigene: 9876 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
版權(quán)所有 2004-2026 www.73327.net 北京博奧森生物技術(shù)有限公司
通過國際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網(wǎng)安備110107000727號
亚洲国产精品无码中文字| 国产亚州精品女人久久久久久| 97在线视频人妻无码| 91精品国产91久久久久久丝袜| A级毛片无码久久精品免费| 成人亚洲视频在线播放| 亚洲悠悠色综合中文字幕| 日本亚洲一区二区在线| 日本无码SM凌虐强制M字开腿| 日本亲近相奷中文字幕| 久久14在线视频| 国产高清无套内谢| 蜜桃视频在线观看不卡| 亚洲欧美中文日韩在线V日本 | 亚洲AV日韩AV无码| 热a亚洲热a国产热a欧美| 亚洲.欧美.日韩.国产.综合| 日本一区二区三区视频| 国产在线国偷精品免费看| 凸凹人妻人人澡人人添| 久久99精品久久久久子伦| 波多野结衣网站| 国产日韩欧美在线高清视频| 和寡妇房东在做爰HD| 国产男女猛烈无遮挡A片软件| 久久99国产精品二区护士| 人妻 丝袜美腿 中文字幕| 羞羞漫画官网| 精品久久久久久综合日本| 精品久久久久久人妻字幕| 色哟哟网站入口在线观看视频| 丁香五香色婷婷| 成熟丰满熟妇高潮XXXXX视频| 亚洲国产精华液2020| 欧美性xxxxx极品娇小| 亚洲欧美另类日韩中文| 男人J桶进女人P无遮挡全过程| AV中文无码在线| 又黄又爽又无遮挡免费视频| 久久亚洲精品中文字幕| 日本不卡一区二区免费更新|