来一水AV@lysav|亚洲AV无码片VR一区二区三区 |国产亚洲精久久久久久无码|视色4se成人午夜精品久久

掃碼關(guān)注公眾號(hào)           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  人才招聘  關(guān)于我們  聯(lián)系我們
久久国产精品_国产精品|A级毛片在线观看
Rabbit Anti-Smad3/BF647 Conjugated antibody (bsm-52224R-BF647)
訂購(gòu)熱線:400-901-9800
訂購(gòu)郵箱:sales@73327.net
訂購(gòu)QQ:  400-901-9800
技術(shù)支持:techsupport@73327.net
說(shuō) 明 書(shū): 100ul  
100ul/2980.00元
大包裝/詢價(jià)
產(chǎn)品編號(hào) bsm-52224R-BF647
英文名稱1 Rabbit Anti-Smad3/BF647 Conjugated antibody
中文名稱 BF647標(biāo)記的兔抗細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)分子SMAD3單克隆抗體
別    名 hMAD 3; hSMAD3; HSPC193; JV15 2; JV152; MAD (mothers against decapentaplegic Drosophila) homolog 3; MAD3; MADH 3; MADH3; Mothers against decapentaplegic homolog 3; Mothers against DPP homolog 3; SMA and MAD related protein 3; SMAD 3; SMAD; SMAD-3; SMAD3_HUMAN.  
規(guī)格價(jià)格 100ul/2980元 購(gòu)買(mǎi)        大包裝/詢價(jià)
說(shuō) 明 書(shū) 100ul  
研究領(lǐng)域 腫瘤  細(xì)胞生物  免疫學(xué)  信號(hào)轉(zhuǎn)導(dǎo)  干細(xì)胞  細(xì)胞凋亡  生長(zhǎng)因子和激素  轉(zhuǎn)錄調(diào)節(jié)因子  
抗體來(lái)源 Rabbit
克隆類型 Monoclonal
克 隆 號(hào) 3D1
交叉反應(yīng) (predicted: Human, Mouse, Rat, )
產(chǎn)品應(yīng)用 ICC=1:50-200 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 47kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 Recombinant human Smad3
亞    型 IgG
純化方法 affinity purified by Protein A
儲(chǔ) 存 液 Preservative: 15mM Sodium Azide, Constituents: 1% BSA, 0.01M PBS, pH 7.4.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產(chǎn)品介紹 background:
Smad3 is a 50 kDa member of a family of proteins that act as key mediators of TGF beta superfamily signaling in cell proliferation, differentiation and development. The Smad family is divided into three subclasses: receptor regulated Smads, activin/TGF beta receptor regulated (Smad2 and 3) or BMP receptor regulated (Smad 1, 5, and 8); the common partner, (Smad4) that functions via its interaction to the various Smads; and the inhibitory Smads, (Smad6 and 7). Activated Smad3 oligomerizes with Smad4 upon TGF beta stimulation and translocates as a complex into the nucleus, allowing its binding to DNA and transcription factors. Phosphorylation of the two TGF beta dependent serines 423 and 425 in the C terminus of Smad3 is critical for Smad3 transcriptional activity and TGF beta signaling.

Function:
Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP-1/SMAD site to regulate TGF-beta-mediated transcription. Has an inhibitory effect on wound healing probably by modulating both growth and migration of primary keratinocytes and by altering the TGF-mediated chemotaxis of monocytes. This effect on wound healing appears to be hormone-sensitive. Regulator of chondrogenesis and osteogenesis and inhibits early healing of bone fractures (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.

Subunit:
Monomer; in the absence of TGF-beta. Homooligomer; in the presence of TGF-beta. Heterotrimer; forms a heterotrimer in the presence of TGF-beta consisting of two molecules of C-terminally phosphorylated SMAD2 or SMAD3 and one of SMAD4 to form the transcriptionally active SMAD2/SMAD3-SMAD4 complex. Interacts with TGFBR1. Part of a complex consisting of AIP1, ACVR2A, ACVR1B and SMAD3. Interacts with AIP1, TGFB1I1, TTRAP, FOXL2, PML, PRDM16, HGS and WWP1. Interacts (via MH2 domain) with CITED2 (via C-terminus) (By similarity). Interacts with NEDD4L; the interaction requires TGF-beta stimulation (By similarity). Interacts (via the MH2 domain) with ZFYVE9. Interacts with HDAC1, VDR, TGIF and TGIF2, RUNX3, CREBBP, SKOR1, SKOR2, SNON, ATF2, SMURF2 and TGFB1I1. Interacts with DACH1; the interaction inhibits the TGF-beta signaling. Forms a complex with SMAD2 and TRIM33 upon addition of TGF-beta. Found in a complex with SMAD3, RAN and XPO4. Interacts in the complex directly with XPO4. Interacts (via the MH2 domain) with LEMD3; the interaction represses SMAD3 transcriptional activity through preventing the formation of the heteromeric complex with SMAD4 and translocation to the nucleus. Interacts with RBPMS. Interacts (via MH2 domain) with MECOM. Interacts with WWTR1 (via its coiled-coil domain). Interacts (via the linker region) with EP300 (C-terminal); the interaction promotes SMAD3 acetylation and is enhanced by TGF-beta phosphorylation in the C-terminal of SMAD3. This interaction can be blocked by competitive binding of adenovirus oncoprotein E1A to the same C-terminal site on EP300, which then results in partially inhibited SMAD3/SMAD4 transcriptional activity. Interacts with SKI; the interaction represses SMAD3 transcriptional activity. Component of the multimeric complex SMAD3/SMAD4/JUN/FOS which forms at the AP1 promoter site; required for syngernistic transcriptional activity in response to TGF-beta. Interacts (via an N-terminal domain) with JUN (via its basic DNA binding and leucine zipper domains); this interaction is essential for DNA binding and cooperative transcriptional activity in response to TGF-beta. Interacts with PPM1A; the interaction dephosphorylates SMAD3 in the C-terminal SXS motif leading to disruption of the SMAD2/3-SMAD4 complex, nuclear export and termination of TGF-beta signaling. Interacts (dephosphorylated form via the MH1 and MH2 domains) with RANBP3 (via its C-terminal R domain); the interaction results in the export of dephosphorylated SMAD3 out of the nucleus and termination of the TGF-beta signaling. Interacts with MEN1. Interacts with IL1F7. Interaction with CSNK1G2. Interacts with PDPK1 (via PH domain).

Subcellular Location:
Cytoplasm. Nucleus. Note=Cytoplasmic and nuclear in the absence of TGF-beta. On TGF-beta stimulation, migrates to the nucleus when complexed with SMAD4. Through the action of the phosphatase PPM1A, released from the SMAD2/SMAD4 complex, and exported out of the nucleus by interaction with RANBP1. Co-localizes with LEMD3 at the nucleus inner membrane. MAPK-mediated phosphorylation appears to have no effect on nuclear import. PDPK1 prevents its nuclear translocation in response to TGF-beta.

Post-translational modifications:
Phosphorylated on serine and threonine residues. Enhanced phosphorylation in the linker region on Thr-179, Ser-204 and Ser-208 on EGF AND TGF-beta treatment. Ser-208 is the main site of MAPK-mediated phosphorylation. CDK-mediated phosphorylation occurs in a cell-cycle dependent manner and inhibits both the transcriptional activity and antiproliferative functions of SMAD3. This phosphorylation is inhibited by flavopiridol. Maximum phosphorylation at the G(1)/S junction. Also phosphorylated on serine residues in the C-terminal SXS motif by TGFBR1 and ACVR1. TGFBR1-mediated phosphorylation at these C-terminal sites is required for interaction with SMAD4, nuclear location and transactivational activity, and appears to be a prerequisite for the TGF-beta mediated phosphorylation in the linker region. Dephosphorylated in the C-terminal SXS motif by PPM1A. This dephosphorylation disrupts the interaction with SMAD4, promotes nuclear export and terminates TGF-beta-mediated signaling. Phosphorylation at Ser-418 by CSNK1G2/CK1 promotes ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses. Phosphorylated by PDPK1.
Acetylation in the nucleus by EP300 in the MH2 domain regulates positively its transcriptional activity and is enhanced by TGF-beta.
Ubiquitinated.

DISEASE:
Defects in SMAD3 may be a cause of colorectal cancer (CRC) [MIM:114500].
Defects in SMAD3 are the cause of Loeys-Dietz syndrome type 1C (LDS1C) [MIM:613795]. LDS1C is an aortic aneurysm syndrome with widespread systemic involvement. The disorder is characterized by the triad of arterial tortuosity and aneurysms, hypertelorism, and bifid uvula or cleft palate. Patients with LDS1C also manifest early-onset osteoarthritis. They lack craniosynostosis and mental retardation.

Similarity:
Belongs to the dwarfin/SMAD family.
Contains 1 MH1 (MAD homology 1) domain.
Contains 1 MH2 (MAD homology 2) domain.

Database links:

Entrez Gene: 4088 Human

Entrez Gene: 17127 Mouse

Entrez Gene: 25631 Rat

Omim: 603109 Human

SwissProt: P84022 Human

SwissProt: Q8BUN5 Mouse

SwissProt: P84025 Rat

Unigene: 727986 Human

Unigene: 7320 Mouse

Unigene: 10636 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
版權(quán)所有 2004-2026 www.73327.net 北京博奧森生物技術(shù)有限公司
通過(guò)國(guó)際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書(shū)編號(hào): 00124Q34771R2M/1100
通過(guò)國(guó)際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書(shū)編號(hào): CQC24QY10047R0M/1100
京ICP備05066980號(hào)-1         京公網(wǎng)安備110107000727號(hào)
天天躁人人躁人人躁狂躁| 久久久久久久人妻无码中文字幕爆| 成人毛片100免费观看| 亚洲无AV在线中文字幕| 黑人大战日本人妻嗷嗷叫| 人妻精品久久久久中文字幕69| 制服丝袜中文字幕在线| 最近中文字幕久久久| 久久久久久亚洲AV无码专区| 狠狠色噜噜狠狠狠888米奇视频| 久久午夜夜伦鲁鲁片无码免费| 麻豆国产尤物AV尤物在线观看| 国产精品人妻一区夜夜爱| 国产亚洲午夜精品a一区二区三区| 七旬老人为满足需求| 隔壁人妻偷人BD中字| 久久亚洲精品中文字幕| 波多野结衣新婚被邻居| 中文字幕日韩亚洲无| 亂倫近親相姦中文字幕| 久久久久亚洲AV无码专| MD传媒破解版APP免费版| 在线不卡AV片免费观看| 欧美老熟妇XB水多毛多| 黑龙江发廊按摩老熟女| 性高湖久久久久久久久AAAAA| 无码国产精品久久一区免费| 日韩一区二区三区精品| 久久精品中文字幕| 亚洲精品婷婷无码成人A片在线| 无码八A片人妻少妇久久| 国产亚洲精品a第一页| 成人妇女免费播放久久久| 无码国产色欲XXXXX视频| 国产精品久久久久久久影视一免费| 国产精品久久久久久妇女| 少妇伦子伦精品无码| 特黄做受又粗又大又硬老头| 天堂av高清一区二区三区| 亚洲成AV人片在线观看无码| 国产山东48老熟女嗷嗷叫白浆|